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Abstract 

The reflection power ratio Pn/Po, transmission power 
ratio Pr/Po and absorption power ratio PA/Po for a mo- 
saic crystal plate under asymmetric Bragg and Laue ge- 
ometry are obtained by solving power transfer equations 
employing three dimensionless parameters: an asym- 
metry factor b, the ratio ( of the absorption to the 
scattering cross section, and the reduced thickness A k 
of the crystal. Expressions are given for the optimum 
monochromator thickness for asymmetric Laue geom- 
etry, and the angular dependence of Pu/Po, PT/Po 
for Bragg geometry in the crystals having different (0 
and Ak~. As a demonstration of the feasibility of this 
method, the integrated reflection power ratio experiment 
by Mathieson [Acta Cryst. (1975), A31, 769-774] is 
reanalyzed and good agreement is obtained. The standard 
formulae for integrated reflection by a mosaic crystal 
given in International Tables for X-ray Crystallography 
[(1972). Birmingham: Kynoch Press] based on the kine- 
matic approximation are shown to be only the limiting 
case of the exact solution for (0 >> 1. 

1. Introduction 

The diffraction process for X-rays and neutrons in an 
infinite plane-parallel mosaic crystal is a basic and im- 
portant problem of crystallography, and many treatments 
from different approaches have been given in the past 
several decades. The first expressions for the variation 
of integrated reflection intensity ratio with degree of 
asymmetry factor b were given for X-rays by Debye 
& Menke (1931). Later experiments by Gay, Hirsch 
& Kellar (1952) showed, however, that this equation 
failed to describe the strong reflections in thick crystals 
with small mosaic spread. Bacon & Lowde (1948) sys- 
tematically investigated the diffraction process for both 
neutrons and X-rays for absorbing plane mosaic crystals 
in the Bragg and Laue cases but only in the symmetrical 
case. Werner & Arrott (1965), Werner, Arrott, King 
& Kendrick (1966) analyzed the behavior of multiple 
Bragg reflections as a two-dimensional problem in semi- 
infinite and bounded mosaic crystals, and showed that 
its reflection power ratio ['reflecting power' in Hu & 
Fang (1993)] has the value P,/Po = 1/Ib[ and 1 for 
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[b[ > 1 and [b[ _< 1, respectively, in a non-absorbing 
crystal. Dietrich & Als-Nielsen (1965) and Fischer (see 
Graf, 1983) found the mistake made by Bacon & Lowde 
(1948) in obtaining the solutions for reflection power 
ratio under asymmetical geometry and deduced the cor- 
rect expressions. All these previous treatments dealt with 
only part of the problem and thus several important 
aspects of the diffraction behavior remained unclear. 

We introduce here a unified theory that describes all 
the diffraction processes and explores several important 
problems that are still obscure. The present paper is the 
fourth in a series. The first, by Hu (1992), introduced a 
new method for the derivation of the reflection power 
ratio and transmission power ratio for deformed mosaic 
crystals based on a layer coupling model, which gave 
good agreement with published experimental data for 
bent Cu crystals. The second paper, by Hu, Yang & 
Wang (1993), applied this model to investigate the 
diffraction properties of a bent mosaic monochromator 
at different neutron wavelengths. The third paper, by 
Hu & Fang (1993), gave exact solutions of the power 
transfer equations for plane-parallel and bent mosaic 
crystals in asymmetric Bragg and Laue geometry for 
the non-absorbing case, # -- 0. 

In the present paper, the theory is generalized to cover 
the absorbing case, # ~ 0. The exact solutions for 
the asymmetric Bragg and Laue geometries are given 
in §2. §3 is a detailed physical interpretation of these 
results. The dependence of the reflection, transmission 
and absorption power ratio, particularly the integrated 
reflection power ratio (IRPR), on the three dimensionless 
parameters b, ( and the reduced thickness A k of the 
crystal are analyzed and presented through a series of 
graphs. The advantage of using (, the ratio of absorption 
cross section to scattering cross section, instead of using 
these two quantities independently is pointed out and 
the optimum crystal thickness in asymmetrical Laue 
geometry is given. 

§4 is an example of an application of the present 
theory. The change of the IRPR with b for 200 re- 
flection from an LiF single crystal measured by Math- 
ieson (1975) is reanalyzed and very good agreement 
is obtained without use of a surface-layer effect. The 
following paper (Hu, 1997; hereafter referred to as II) 
deals with the extinction problem analyzed by use of the 
theory developed in this paper. 
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2. Exact solutions of the power transfer 
equations for asymmetric Bragg and 

Laue geometry in a plane mosaic crystal 

The Hamilton-Darwin intensity (current density) trans- 
fer equations (here referred to as H-D equations) (see 
Hamilton, 1957) 

dlo/dx o = - 27,tl o + ~ . I  H ( la)  

dlH/dX H = - Z t l  H + Zs l  o (lb) 

can be reduced to the one-dimensional power transfer 
equations for an infinite plane-parallel crystal plate with 
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Fig. 1. Schematic diagrams of the geometry for (a) the Bragg case 
and (b) the Laue case. 

an asymmetry angle X and thickness t o (see Hu & Fang, 
1993): 

dPoldt  = -  ZtPoI"/o + S,.P./I.YHI (2a) 

dPHIdt = - S,,PHITH + S~Po17.11%7., (2b) 

where St = Z s + #, 70 = cos 00 = i 0 • fi, 7 H =  
COS O H = XH" fi and Ss is the diffraction cross section 
per unit volume. # is the absorption cross section per 
unit volume [linear absorption coefficient for X-rays or 
the total attenuation coefficient for neutrons as defined 
by Freund (1983)]. 

The solutions of the power transfer equations (2a) 
and (2b) for Bragg and Laue geometries in a non- 
absorbing plane mosaic crystal were published by Hu 
& Fang (1993) and their notation will be used here. The 
schematic diagrams for the Bragg case and the Laue case 
are shown in Figs. l(a) and (b), respectively. 

The reflection power ratio PH/Po, transmission power 
ratio PT/Po and absorption power ratio PA/Po in a plane 
mosaic crystal with absorption for asymmetric Bragg 
and Laue geometries were obtained by solving these 
equations. 

The boundary condition is 

PH(to)/Po = 0 (3) 

for the Bragg case and 

PH(O)/Po - 0  (4) 

for the Laue case and, from the principle of total power 
conservation: 

e./P.. + PT/P.. + PA/P.. = 1. (s) 

We introduce three dimensionless parameters: 
(i) b = cos 00/cos O H, the asymmetry parameter: 

b = -sin(0/~ + X)/sin(O o - X) (6) 

for the Bragg case and 

b = cos(08 + X)/cos(O R - X) (7) 

for the Laue case; 
(ii) ( = #/S, . :  the ratio of absorption cross section to 

the coherent elastic scattering cross section; 
(iii) A k = Ssto/cosOo: the reduced thickness of the 

crystal expressed in units of cos 00 /S  s (see Hu & Fang, 
1993). 
Z,. = QW(AOo) and W(AOo) is the Gaussian distribution 
for the mosaic blocks at angular deviation A00: 

W(AOo) = [1/r/(27r)'/2] exp{-[Zl00]z/2r/2}. (8) 
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For non-polarized X-rays, 

( e )2 IFH[2N2A3P 
Q = ~ sin 20 n 

(9) 

p = (1 + cos 2 208)/2.  (10) 

With u = [(1 - b)Z(( + 1) 2 + 4b] I/2, v = ( 1 - b ) ( ( +  
1) and w = (1 + b ) ( ( +  1), the solutions can be expressed 
as follows: 

(a) Bragg case 

P .  _ 211 - exp( -uAk)  ] 

Po (u + v) + (u - v) exp(--UAk) 
( l l )  

for all b and ( except ( = 0 ,  b = - 1. For the symmetric 
Bragg case (b - - 1 ) ,  (11) becomes 

Pt4/P(, = {1 - e x p { - 2 ( (  2 + 2() ' /2Ak]}{((  2 + 2()  1/2 

jr_ ~ -+- i -+- [(~2 q_ 2~)1/2 _ (~ _+_ 1)] 

× exp[--2(~ 2 + 2~)~/ZAk]} -~ (12) 

P./Po - Ak/(1 +At) 

for # = 0, b = - 1 .  

(13) 

PT = 2uexp[- - (w + u)Ak/2 ] (14) 

Po (u + v) + (u - v) exp(--UAk) 

PA/Po = {(u + v -  2) - 2u e x p I - ( w  + u)Ak/2 ] 
+ ( u -  v + 2 )exp( - -UAk)  } 

× [(u + v) + (u -- v) exp(--uAk)]  -1 (15) 

(b) Laue case 

P,/P,, = {exp[ - (w  - u)AJ2] 
- e x p [ - ( w  + u)Ak/2]}/u. (16) 

For the symmetric Laue case (b = 1), (16) becomes 

Pn/Po = exp[--(Ak][1 -- e x p ( - 2 k k ) ] / 2  (17) 

PT/Po = {(u + v) e x p [ - ( w  + U)Ak/2 ] 
+ ( u  -- v)exp[-- (w -- U)Ak/2]}/2u (18) 

PA/Po = 1 - {[1 + (u - v) /2]  e x p [ - ( w  - U)Ak/2 ] 
-- [1 -- (u + v) /2]  e x p [ - ( w  + u)Ak/2]}/u. 

(19) 

The same PH/Po can be derived from either the two- 
dimensional  solution of the H - D  equations ( l a )  and ( lb)  
(Zhou. Yang & Hu. 1995) as shown in Appendix A or 

the numerical calculation from the layer coupling model 
(Hu, 1992). All these confirm the consistency of these 
theories. 

Values of the reflection intensity ratio I,/1 o and 
transmission intensity ratio IT/I o for a collimated mono- 
energetic incident beam of X-rays (or neutrons) of 
infinite extension may be defined through the relation- 
ships 

I . / I  o = IblP./Po (20) 

and 
IT/I o = PT/Po. (21) 

One should note that P///Po can be used either in the 
case of an incident beam of limited width or a beam of 
infinite extension, while the IH/I o is valid only for the 
latter case. 

Expressions (3)-(21) are general formulae valid for 
both symmetric and asymmetric Bragg and Laue geome- 
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Fig. 2. Dependence of the reflection power ratio PH/Po on the reduced 

thickness Ak of a mosaic plane crystal for the Bragg case and the 
Laue case. The values of the parameter Ib[ tbr the curves from top 
to bottom are: 0.1, 0.5, 1.0, 1.5, 2.5, 5.0, 10.0. The corresponding 
curves for ( = 0 were given by Hu & Fang (1993)• 
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tries, with and without absorption, for X-ray, neutron or 
electron diffraction in a plane mosaic crystal. Dietrich 
& Als-Nielsen (1965) and Fischer (see Graf, 1983) have 
~btained similar expressions to (16) and (l  l )  but their 
formalism is complex and it is difficult to understand 
the physical meaning of their formulae. Thus, their 
application is limited. 

3. P h y s i c a l  i n t e r p r e t a t i o n  o f  t h e  s o l u t i o n s  

3.1. The effect of asymmetric geometry and absorption 

From the solution of the power transfer equation, we 
can see the comprehensive and complicated dependence 
of the reflection power ratio, transmission power ratio 
etc. on the asymmetry  parameter b, the ratio of absorp- 
tion cross section to scattering cross section ( and the 
reduced thickness Ak, " as illustrated in Figs. 2-5.  

For both symmetric and asymmetric geometry,  one 
can see from Fig. 2 that: (i) for the same ( and A k, Pn/Po 
decreases with increasing [b[; (ii) for the same ( and b, 
in the Bragg case P///P() increases with A t when A k is 
small, and saturates as A k increases, while in the Laue 
case with absorption, P,/Po goes through a maximum 
value at a certain a~"x whose expression is given below. Lit k ,~ 

For the same A k, Pn/Po increases with increasing 1/(, 
and most strongly as ( --* 0 (Hu & Fang, 1993). For 
the symmetric  geometry and without absorption, the 
maximum reflection power ratio attainable in the Laue 
case is only 0.5, half  of the maximum reflecting power 
ratio attainable in the Bragg case; but this ratio can 
exceed 0.5 as ( increases, and the reflection power ratio 
is larger than 0.5 for the Laue case with p, ~_ 0 and 
b <  1. 

0 
0 1 2 3 4 5 

(a) 

0.8 

0.8 - 
o.1 

/p.\ ox 
0 .4  oJs 

O.2 

0£ . . . . . . . . . .  
0 1 2 3 4 5 

~ = ~ / T ,  
(b) 

Fig. 4. (a) The dependence of A max k on (. (b) The dependence of 
(PH/Po) max on ~ in the Laue case. The parameters on the curves 
are b. 
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Fig. 5. Rocking curves of the reflection power ratio (continuous curves) and transmission power ratio (dashed curves) in the symmetric Bragg 
case for different values of (0 given on the curves. (a) AM) = 0.2; (b) Ako = 1.0; (c) Ako = 6.0. Note that the rocking curves for PH/Po 
and PT/Po are identical when ~0 -- 0. 
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For a crystal with a given value of (, the value 
of P,/Po in the Bragg case decreases with Ib], while 
PA/Po increases with Ibl, as shown in Fig. 3. This is 
because, for the same path length traveled by the incident 
beam, the diffracted beam for smaller [bl comes from a 
position closer to the crystal surface than for larger Ibl, 
so the diffracted beam experiences less absorption and 
the resultant reflection power ratio is larger. 

3.2. A'~ ~ for asymmetric Laue geometry 
A max is defined as the value of A k when PH/Po is a k 

maximum. Its value for asymmetric Laue geometry can 
be obtained through the relationship 

d(Pn/P())/dA k = O, (22) 

which gives the expression 

(iii) For a thick crystal, in the transition region be- 
tween non-absorption and absorption, i.e. from to = 0 to 
t0 > 0, the FWHM for PH/Po decreases with increasing 
t0; and, when ~0 > 10, it approaches the 'secondary- 
extinction-free' limiting value, 2(2 In 2)1/2r/= 2.355r/, 
the true mosaic spread (see Fig. 4 of II). We note that, 
in the normal case of X-ray diffraction, the condition 
t0 > 10 is generally met and the shape of the rocking 
curve nearly represents the true mosaic distribution. But 
for neutron diffraction this condition usually does not 
hold, since in most cases #/~'s0 -~ 0; and from Fig. 7 
one can see that the FWHM for the rocking curve will 
be several times the true mosaic spread; 

(iv) Fig. 5(a) shows that PA/Po becomes almost 
independent of rocking angle when Ag o <_ 0.2; the 
value of PT/Po at the tail of the rocking curve is 
exp ( -# t0 / cos  00) in the limiting case when S~ ~ 0, 
i . e . t ~ c ~ .  

Amax _1 In (1 + b) ( t  + 1) + -.u (23) 
"'k = u ( l + b ) ( t + l ) - u  

Figs. 4(a) and (b) depict the dependence of A max and k 
(PH/Po) max, respectively, on t for an absorbing crystal 
with different b values for the Laue case. 

3.3. Rocking curves 
Some important conclusions follow from the cal- 

culated rocking curves of the reflection power ratio 
and transmission power ratio. With the assumption of 
a Gaussian distribution of the mosaic blocks, Figs. 
5(a)-(c) depict the angular dependence of PH/Po and 
PT/Po for the reduced thickness of the crystal, Ago = 0.2, 
1 and 6. PA/Po is not shown since it can be obtained by 
the principle of total power conservation when PI4/Po 
and PT/Po are known. The values of S~,, t and a k at 
A0 o = 0 are defined as 

S ~) = Q/(27r)'/271 (24) 

~o = #/S,~) (25) 

Ago = Z~.oto/COS 0 o = Qto./(27r)'/2r/cos 0 o 

and the expression 

(26) 

#to~cos 00 = toAko (27) 

can be obtained by relating these parameters. 
One can see from Figs. 5(a)-(c) that: 
(i) For the same (0, the FWHM of Pt4/P() increases 

with increasing Ago; 
(ii) The shape of rocking curves for PH/Po remains 

the same for to > 5 and Ako _> 0.4, where the IRPR 
saturates (see Fig. 6a) and PT/Po ~_ 0 for all A0o; 
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Fig. 6. ROn/q tbr a plane mosaic crystal as a function of the reduced 
thickness A~). Bragg case (continuous curve); Laue case (dashed 
curve). (a) The parameters given on the curves are (0; (b) the 
parameter Ibl for the curves from top to bottom are 0.1, 0.5, 1, 
2 , 5 , 1 0 .  
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3.4. Integrated reflection power ratio 
o The IRPR R H is defined by the expression 

for b = 1, substituting ( = i z / S  ,, into (17) with ( >> 1, 
we obtain 

ROn( (o, Ata), b ) / *i 

= +fC(Pn/P(,)(((AOo/~),Ak(AOo/rl),b ) d(A0o/r/). 
- - ( X 3  

(28) 

The IRPR for Bragg and Laue geometries can be 
obtained by substituting (11)-(13) and (16)-(17) into 
(28). When ~ is very large (i.e. # >> Z ) ,  for the Bragg 
case (11) becomes 

PH/Po = {1 - exp[- (1  - b)#t o sec 0o] } 

× [ ( 1 - b ) ( (  + 1)] -1 (29) 

and substituting ( = # / S  s into (29) with ( >> 1, we 
obtain 

R°n - Q{ 1 - exp[- (1  - b)#t o sec 00] }/[(1 - b)#]. 

(30) 

The corresponding expressions for the Laue geometry 
for b :fi 1 are 

P H / P o -  {exp[ -b ( (  + 1)Ak]-  e x p [ - ( (  + 1)Ak] } 

× [ ( 1 -  b)((  + 1)] -1, (31) 

R ° = [Q/(1 - b )# ] [exp( -# t  o sec OH) 
- e x p ( - # t  0 sec 00) ] (32) 

101 /" 

JlJY  
lo* ¢~ 

10 a 10 ~ 10 "~ 10. 10 ~ 10. 10. 
Q _~Z~ 

~ 2 ~ -  2 ~o 
Fig. 7. The relationship between Q/211 and R°n from a plane 

mosaic crystal of infinite thickness in the Bragg case for 
b -- -0.2,-0.5, -1, -2, -5, --10 for the curves from top 
to bottom. 

R ° = Qt o sec 0 B e x p ( - # t  o sec OB). (33) 

Equations (30), (32) and (33) are identical with the kine- 
matic formulae for integrated reflection QA c published 
in International Tables for X-ray Crystallography (1972) 
(here referred to as ITXCr) for a crystal with absorption. 
Note that for the Bragg case the sign of angle X in the 
present paper is the same as that in ITXCr (1972), but 
for the Laue case it is reversed. 

Fig. 6(a) depicts the the relationship between R°/T1 
and A~ for different (0 in the symmetric geometry. If we 
follow the definition given by Bacon & Lowde (1948) 
that a thin crystal should have its IRPR within 5% of the 
Qto/COS 0 o value, then the thickness of the thin crystal t o 
will decrease with increasing ~0" It can also be seen from 
Fig. 6(b) that this thickness is reduced with increasing 
Ibl. When ~0 = 2, this expression is valid only in the 
region A~ < 0.04 for Ibl < 1 and Ak, , = 0.04/11 + bl for 
Ib[ > 2. From Figs. 6(a)-(b), we can also see that, when 
the thickness increases, in the Laue case the IRPR goes 
to a maximum, while in the Bragg case it approaches a 
saturation value. For a thick crystal, the saturation value 
of Ako decreases with increasing ~() or Ibl. 

Fig. 7 summarizes the relationship between R ° and 
Q/712# for an infinitely thick crystal with different 
Ibl in the Bragg case. At the left side, e.g. around 
Q/~12# = 0.1 or ~0 > 12.6, the absorption mean 
free path (MFP) is much smaller than the scattering 
MFP. The dependence of R°n on Q/21t for different 
Ibl is demonstrated by the parallel lines in the double 
logarithmic plot of Fig. 7, with slope unity. Here the 
secondary extinction is weak and approaches zero on 
the extreme left as an asymptote to the dot-dashed line 
representing the secondary-extinction-free case. On the 
fight side of Fig. 7, where Q/~72# > 10 or ~0 < 0.13, 
corresponding to the larger ratio of the absorption MFP 
to scattering MFP, the secondary extinction increases 
with decreasing ~0, e.g. when ~0 - 0.1 or Q/~72p, = 
12.53, we have R°n/rl = 3.82 and 2.53 for b = -0 .1  and 
b = - 1 ,  respectively, their ratio being 1.5. As ~0 further 
decreases, the curves move outward to the nearly non- 
absorbing limit (~0 = 5 × 10-19), R°n/zl = 18 for Ibl _< 1 
and R°/rl = 18/Ibl for Ibl > 1. The secondary-extinction 
factor implicit in this figure will be expressed explicitly 
in Fig. 4 of II. 

It should be noted that all the work described above 
is based on the concept of reflection power ratio PH/Po 
rather than reflection intensity ratio IH/I o defined in 
(20). When one draws the set of curves for IH/I o 
versus A k, one sees that, in contrast with the relationship 
between PH/Po and Ibl for a definite ~ and A k, the In/ l  o 
values for large Ibl will be larger than those for smaller 
Ibl. This is the same for the relationship between the 
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integrated-reflection-intensity ratio and Au). Since (2a) 
and (2b) given by Hu & Fang (1993) are based on a 
one-dimensional approximation of H-D equations for 
an infinite plane parallel crystal, i.e. by assuming that 
the incident radiation has an infinite extension along the 
crystal surface, hence the reflection intensity ratio I n / I  o 
obtained through (20) can only be applied for a very 
broad incident beam in both the Bragg and Lane cases. 
Here we shall investigate the Bragg case in more detail. 

(i) When 0 < (0 < 1, as is the case for most neutron 
diffraction and for X-rays when # is smaller than Z'~), 
the beam penetration is deep, the lateral extension of the 
diffracted beam is large and usually we cannot use the 
value of 1 , / I  o obtained from (20). We consider neutron 
diffraction of Cu(200) with 71 = 10', # = 0.42 c m  -1  for 
A = 1.3 A,, X = 0° as an example. Here, 0/~ -- 21.08 °, 
Q = 47"8 'cm-I '  S,,o = Q/(27r)l/ezl = l ' 9 c m - l ,  ~0 = 
0.22 and the IRPR will saturate when Au) > 6 or 
t o > 1.1 cm. For a pencil incident beam according to 
Werner, Arrott, King & Kendrick (1966), about 92% 
of the neutrons of the exit beam are distributed over a 
width of 2t 0 cos 0 n (i.e. 2 cm), hence the infinite-beam- 
width approximation is satisfied only when the width of 
the incident neutron beam exceeds this value by about 
a factor of four (i.e. 8 cm). However, this requirement 
has often been overlooked. The correct expression for 
the reflection-intensity ratio from an incident beam of 
finite width is the result derived only by using the two- 
dimensional H-D equations given by Werner, Arrott, 
King & Kendrick (1966); while, for a 6-function beam 
incident on a crystal of infinite thickness, the solution 
(36) is shown in Appendix A. 

(ii) When (0 > 2, the normal X-ray case, the beam 
penetration is shallow, usually less than half a scattering 
MFP, and the condition of mirror surface reflection is 
usually met, so that a beam width of several milli- 
meters can already be considered as infinitely broad. 
The Fankuchen (1937) effect, i.e. the space condensation 
of the diffracted current density with increasing Ibl, 
appears; however, it may not be as strong as in the 
perfect-crystal case owing to the strong absorption, and 
the value of I , / I  o is usually less than 1 because of its 
relatively small reflection power ratio compared with the 
weakly absorbing perfect crystal. 

The solution for P , / P o ,  i.e. (11)-(13), (16) and (17), 
differs from the reflection intensity ratio and transmis- 
sion intensity ratio given by (20) and (21), for which 
the incident-be,un width has to be considered and the 
corresponding R ° is independent of the incident-beam 
width and relates only to the ratio of incident and 
reflected total power. This has already been proved by 
use of the layer-coupling-model treatment (Hu, 1992). 
In an experiment, this means that a wide open detector 
should be used to collect all the diffracted beam. 

One should note that, although in (20) 1/4/10 ---- PH/Po 
when Ibl = l ,  IH/ lo+lT. / l  o will not be unity when # = 0 
unless the width of the incident beam is infinite. 

4. Application of the theory: reanalysis of the 
experiment of integrated reflection power 
ratio of LiF under asymmetric geometry 

In this section, Mathieson's (1975) experiment is re- 
analyzed as a demonstration of the capabilities of the 
theory. For a long time, the formula in ITXCr (1972) 
corresponding to (30) was considered as describing ade- 
quately the IRPR for an absorbing mosaic crystal under 
asymmetric Bragg geometry. However, the integrated 
reflection intensity ratio measurement carried out on 
various crystals such as calcite, quartz, fluorite and 
lithium fluoride showed noticeable deviations from the 
theoretical prediction (Evans, Hirsch & Kellar, 1948; 
Gay, Hirsch & Kellar, 1952). These authors attributed 
this discrepancy to the existence of a layer of irregu- 
larities on the crystal surface that may cause absorption 
of X-rays without much contribution to reflection. The 
deviation remains however for a crystal with etched 
surface. 

Mathieson (1975) measured precisely the (200) IRPR 
under asymmetric Bragg geometry for several different 
b values for an LiF single crystal having NaC1 structure 
(a = 4.026 ,~) with Cu Ka X-radiation (A = 1.54 ,~). 
The experimental data depicted in Fig. 8 show very large 
deviations from the theoretical result predicted by (30), 
which is depicted as curve (a). Mathieson, like previous 
authors, explained the discrepancy by the surface-layer 
effect. 

We shall reanalyze these experimental data with our 
method. Expression (30) based on the kinematic approx- 
imation corresponds to the extreme case when # >> S~) 
in our multiple reflection treatment, depicted on the left 
side in Fig. 7 or curve (a) in Fig. 8. The other extreme 

R~(b) 
R~(b---1) 

0 
2 

' \ ' \  (a) 

\ .  
- (b) \ ' \ . \  

" \ , \  

. . . . . . . . . . . . . . . .  ~- , . .~_ 
1 0 

2 
1-b 

Fig. 8. Comparison of the theoretical prediction with the experimental 
asymmetric IRPR curve for X-rays by an [.iF plane mosaic crystal: 
(a) theoretical prediction ['or large (0; (b) the open circles show the 
experiment results obtained by Mathieson (1975) and the full curve 
our theoretical prediction |br (0 -- 0.045; (c) theoretical prediction 
t.or (o = 0. Since b = - s in (0n  + \)/sin(Ott- \), the abscissa in 
this figure is the same as in Fig. 5 in Mathieson (1975). 
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case, i.e. /z = 0 or (0 = 0, which corresponds to the 
extrapolated right side of Fig. 7 and R°H(b)/R°H(b = - 1 ), 
will give the values 1 and 1/Ibl for Ibl _< 1 and Ibl > 1, 
respectively, as depicted by curve (c) in Fig. 8. Neither 
of these extremes fits the experimental data. Lithium 
fluoride is composed of atoms of low atomic number Z 
and the crystal has a small mosaic spread, so that its 
200 reflection is a strong peak with large Q value; by 
our definition, this corresponds to the case of (0 -~ 0 
and in our diagram lies close to the fight side in Fig. 7. 
This means we might expect the experimental data to lie 
somewhere between curves (a) and (c) in Fig. 8. 

The theoretical fitting curve corresponding to these 
experimental conditions can be calculated from (11) and 
(28) by using (0 as a fitting parameter. The best fit, corre- 
sponding to (o = 0.045, was used further to calculate 71 
with the known parameters of the LiF 200 reflection, 
# = 27.7cm -I (Ice & Specht, 1992), 0 B =-22.52 ° , 
Q = 206' cm-1 and Debye-Waller factor BLi = 0 .90 ,  

B v = 0.63/~2 (Killean, Lawrence & Sharma, 1972). The 
final result, depicted as curve (b) in Fig. 8, agrees 
well with experiment, and the value of 71 - 8.03", 
evaluated from (0, is the only adjustable parameter. This 
7/value corresponds to a mosaic spread of 18.9", which 
is about four times the Darwin width, 4.67", for the 
200 reflection. From equation (2) in II, the secondary- 
extinction factor for the 200 reflection in symmetric 
geometry is Y, = 0.12. This low value is in reasonably 
good agreement with the experimental value, Y~, = 0.20, 
obtained by Lawrence (1972) for the same reflection of 
LiF. 

The method introduced by Kawamura & Kato (1983) 
is also used for fitting Mathieson's experiment by plot- 
ting the dependence of the ratio of P, /Po  at different 
b and PH/Po at b = - 1  on 2/(1 - b ) .  A good fit 
can also be obtained by a fitting parameter ~ = 0.110. 
Since ~ = #/~.,. (here ._V is equivalent to the coupling 
constant o- in Kawamura & Kato's formalism), we 
have cr = 252cm-1 for the known # value of LiF. 
Because the extinction distance for the LiF 200 reflection 
is A = 5.68 × 10-6m, the correlation length of the 
phase factor "1-2 = aA2/2 = 4.04 × 10 -7 m can also be 
evaluated, and this gives the fitting parameter 71KK of the 
coherent blocks, namely *IKK = 13.7", which is about 1.7 
times the value obtained by our previous method. The 
value "r2/A = 0.0713 << 1 obtained from this fit implies 
that the power transfer equations are certainly valid in 
this case, i.e. the secondary extinction is predominant. If 
the experiment is camed out for the same sample under 
two different wavelengths, then the mean size of the 
blocks 1 can also be obtained by Kawamura & Kato's 
method. 

In the analysis of his LiF data, Mathieson (1975) 
assumed that a layer of thickness tsu r = 1.4 x 10 -5 m 
of absorbing but non-reflecting material on the surface 
of the abraded crystal is responsible for the deviation of 
his result from theory. However, this is questionable. 

(i) If we allow Mathieson's argument and assume that 
the relationship represented by curve (a) in Fig. 8 still 
holds for his case without a surface layer, then #/S,~) 
should be no less than 4 from Fig. 7, and the r/value of 
the crystal would be ~ > 15.0'. This value is too large 
and highly improbable for a typical LiF crystal. 

(ii) Note that the condition in which curve (a) in Fig. 
8 is valid for the LiF case also implies that the IRPR 
expressed through (30) must come from the integration 
of P. /Po  expressed by (29). In such a case, the peak 
value of P. /Po  for b = - 1  is S,o/2  # -- Q/2(27r)l/zTl#, 
and for any T/< 1.48' this value will exceed unity, which 
is impossible. This means that the mosaic spread of the 
sample will be no less than 1.48', again a value too 
large for LiF. 

(iii) According to Domer (1971), the scattering from 
the surface layer cannot be negligible and the treatment 
by Mathieson (1975) is oversimplified. 

For a crystal with a surface layer, the layer-coupling 
model (Hu, 1992) is a good choice for the evaluation 
of its IRPR. However, since the path length of the 
beam within each layer increases with the asymmetric 
parameter /3 [/4 = (b + 1 ) / ( b -  1)], it is important to 
have a large enough number of layers for obtaining 
the exact extinction value when I/3l increases. Besides, 
because of the many parameters such as surface-layer 
thickness t~u r, 7/, 7lsu r etc. involved, a proper fit may 
require an experiment to be carried out using more than 
three wavelengths, and the fitting process will be quite 
tedious. Thus, the best way is to use a properly treated 
surface-layer-free crystal for such an experiment. 

From all the above arguments and the good fit of the 
curve of Fig. 8(b) in this work, it is highly probable that 
the deviation of the experimental curve (b) from (a) is 
due to multiple reflection and not a surface effect. 

The rather small value of 'q = 8.03" obtained from 
our analysis of Mathieson's experiment may imply the 
existence of weak primary extinction. However, so far 
as the H-D equations treatment is still valid (Werner, 
1974; Becker, 1977), one can use  YpS~. 0 instead of Z'~) 
in power transfer equations to evaluate the same fitting 
curve (b). The only difference here is that z//Yl, will 
appear instead of 71. 

5. Conclusions 

By introducing three dimensionless parameters, a very 
general set of solutions describing the diffraction behav- 
ior of X-rays, neutrons and electrons in mosaic crystal 
plates is established. It can be applied to describe crystal 
samples with all possible thicknesses, mosaic spreads 
and degrees of absorption for all types of diffraction 
symmetry and to evaluate the reflection power ratio, 
transmission power ratio, absorption power ratio and 
their integrated values. It is shown that the standard 
formulae in ITXCr (1972) for the integrated reflection, 
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i.e. (30), (32) and (33) in this paper, for a mosaic crystal 
are simply limiting cases of the exact solutions. 

The increase of IRPR with increasing 1/Ibl, 1/Fo and 
0 Ak0 is found to be fast and the influence of Ibl on R H 

is remarkable. All these results follow from the one- 
dimensional H-D equations but one can see that both the 
penetration depth and the lateral spread of the incident 
beam can be evaluated under Bragg geometry from the 
saturated value of Ak0 when b and (0 are defined. 

The theory serves not only as a basis for the crystal 
extinction treatment to be described in II but may also 
be expected to find wide application in monochromator 
design under either symmetric or asymmetric geometry 
for X-ray, neutron and electron beams. 

The reciprocity relation (see Wilkins, 1981) between 
the positive and negative asymmetric cases can be de- 
rived from (36), which means that the extinction factors 
Y,, and Yn will be the same for b and 1lb. 
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APPENDIX A 
The derivation of PH/Po from the two- 

dimensional solution of the H-D equations 
(la) and (lb) (Zhou, Yang & Hu, 1995) 

Assume a 6-function beam with power P0 incident on a 
plane mosaic crystal of infinite thickness at the origin 
O for the Bragg case [Fig. l(a); note that both the 
coordinates x 0 and x H originate at O]. The boundary 
conditions are: 
along the incident beam: 

In(x,), O) = P()S~ exp(--XtXo)Xo/sin2OR; (34) 

along the crystal surface from the origin O: 

t0 (x  0, - bx  0) = 0. ( 3 5 )  

The distribution of the reflection intensity along the 
crystal surface will be 

l , (xo,  - bxo) = (PoXffsin 20R) { lo[2Xs( -b  ) l /2Xo] 

- t212 (-b)'/2xo]} 

× exp[ -Zt (1  - b)x0]. (36) 

The total reflection power Pn can be obtained by the 
integration 

(3,O 

Pn = .f II4(xo, - bxo) sin 20• dx 0, (37) 
o 

which gives the same PI4/Po formula as (11) for A k = 
0<3. 
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